
7AD-A178 13 PORTABLE OPERATING
SYSTEMS FOR NETWORK COPUTERS7

/
DISTRIBUTED OPERATING S..(U) STATE UNIV OF NEW YORK AT
STONY BROOK DEPT OF COMPUTER SCIENC. L D WITTIE N

UNCLASSIFIED 31 OCT 85 ARO-18864.12-EL DAAG29-B2-K-8183 F/G 9/2 NEEEEEEEEEEEEE
EEEEEEEEEEEEEEIIIIU~
IUlflflflflflflIflf

4-4

1.4 _L

MiR P REOUTO TETCHR
4IOA 111= IIII

SE(t*T CLASSI. CATO OF TIS PAGE E E T
)RT DOCUMENTATIOPM

AD-A 170 113 3.DKTPING I IRMDN A

OECLAUIpICATION/JOOWNGRAOING SC.4OULE agvdiipbi seu
Distibution Unlimited

A EROMIGORGANIZATION REPORT NUMBER(Ss) 6. MONITORING ORGANIZATION RESPORIT NUMBER(tSl

aNAME OF PERFORMING ORGANIZATION OFFICE SYMBOL 7m. NAME OF MONITORING ORGANIZATION

SUNY-Stony Brook U.S. Army Research Office

fe, ADORE.S ICity. Sm amda ZIP Cob) 71111 ADDRESS ICity. Sam oad ZIP Code)

*Department of Computer Science Research Triangle Park
State University of New YorkWotCalia27921

mtoy Blrook- New York 11704-44Nrh aoin 70921
ft NAME OFPFUNDINGISPONSORING OFFICE SYMBOL S. PROCURCEEN INSTRUMENT I0DENTIFPI CATION NUMBER

ORGANIZATION to III ace)
U.S. Army Research Office DAAG-29-82-K0103 / P-i8864-EL

St ADORESS (Cty. Shaft ad ZIP Codu) 1. SOURCE Of FUND0ING NOB6. __________

PROGRAM PROJECT TASK WORK UNIT
Research Triangle Park ELE MINT NO. NO. f "N. No.

North Carolina 27709-2211
1i. TITLE 1lmcdade Socmnty Ckmoflgeheue /
Portable Operating System (unclassified) _____________j

12. PERSON4AL AUTHOR(S)
Prof. Larry D. Wittie

13. TYPE OF REPORT 13. TIME COVERED 14. ATS OF REPORT Yr.. e.. Ds 37ECO NFinal FPROM 4/12/32 TO8/_31/851 10/31/85I
16. SUPPLEMIENTARY NOTATION

Subtitle: Distributed Operating Systems Support for Group Communications

1?. COSATI COOES S9 SUB0JECT TeRmS fC@Aeaae @a1 uwwem If' emer nd 68 deesay 6y block Number)

FIELD GROUP $1600.Rm. I Distributed Operating System, Hierarchy, Management
j I Computer Network Commvunication

19. ABISTRACT I(e1~mon oftwu. If' owaiem" and sdei ly 6block faimberl

The project "Portable Operating Systems for Network Computers" that ran from April 1982 un-
til August 1985 saw the creation of an entire distributed operating system (MICROS/SAM2S)
for a multiple ethernet system of DEC LSI-11 and Motorola 68000 systems. The modularity,
hidden type managers, abstract manager hierarchies, message-oriented drivers, and layered
tasks used in the design of the SAM2S operating system allowed the easy porting of the ori-
ginal LSI-11 based system to Motorola 68000 processors and its extension to a plexus of
four interconnected thernets. The system was used to explore ways to support efficient

communications within groups of processes scattered over many computers, especially in very
@4 large networks. This project has carefully delineated different classes of multicast com-

unications within networks and has shown three different efficient ways to implement multi-
- cast: host, channel, and tree-based protocols. Only tree multicast is suitably efficient

for networks of thousands of computers.

DISTRIBUTIONAVALASOLITY OF ABSTRACT 21 ASSTRACT SECURITYV CLASSIFPICAT ION

N4CLASSIPI20fUNIIMI1'ED SAME AS RPT. C aTIC USERS C Unclass ifiled

* 22m, NAME OF RESPONSIBLE INDIVIDUAL 221 TELEPHONE NUMBER1 22c OFF ICE SYMSOL
Idntlbde Arre Coat,

Prof. Larry D. Wittie 1(516) 246-8215

00 FORM 1473,863 APR EDITION OF I JAN ?3 S$ OBSOLETE

* SE1CUIiTY CLASSIFICATiON Of Sw'S P&4

- Nd~'~~. ~**.* N '%. .

,~..... ,trrrI ,rn .ru rnruu nc, .r. r S f4 W, - . :- . - - . - -: -- -- - - - V. - -

Si

Portable Operating Systems for Network Computers:
Distributed Operating Systems

Support for Group Communications

Prof. Larry D. Wittie
Computer Science Department
State University of New York

Stony Brook, New York, 11794-4400
(516)246-8215

The project "Portable Operating Systems for Network Computers" that ran from
April 1982 until August 1985 saw the creation of an entire distributed operating system
(MICROS/SAN'12S) for a multiple ethernet system of DEC LSI-11 and Motorola 68000
systems. The modularity, hidden type managers, abstract manager hierarchies,
messsage-oriented drivers, and layered tasks used in the design of the SAM2S operating
system allowed the easy porting of the original LSI-11 based system to Motorola 68000
processors and its extension to a plexus of four interconnected ethernets. The system
was used to explore ways to support efficient communications within groups of processes
scattered over many computers, especially in very large networks. This project has
carefully delineated different classes of multicast communications within networks and

-. has shown three different efficient ways to implement multicast: host, channel, and
tree-based protocols. Only tree multicast is suitably efficient for networks of thousands
of computers.

This is the final report on the project "Portable Operating Systems for Network
Computers" that ran from April 1982 until August 1985. With the support from the
Army Research Office (DAAG-29-82-K0103), this project saw the creation of an entire
distributed operating system (MICROS/SAM2S) for a multiple ethernet system of DEC
LSI-11 and Motorola 68000 systems. This operating system was used to explore ways to
support efficient communications within groups of processes scattered over many com-

-, puters, especially in very large networks of computers. Besides the research and the
development of the operating system, this work has seen the completion of two PhD
dissertations and twelve Masters projects and the publication of nine papers- 9 in the
area of distributed systems. A list of the fourteen students with their dissertation and
project titles is appended in the final acknowledgement section.

The next section of this report describes the design principles for SAM2 and the
-* organization of two SAM2S implementations. The following two sections give the status 0

,. of SAM2S and MICROS and conclusions reached in using Modula-2 to develop and port

SAM2S. The last half of this paper expounds a theory of multicast communication
facilities appropriate for large networks and tells the results of adding group communi-
cation primitives to MICROS/SAM2S.

hvaljbihty Codes

Avail aridior
Di. t - .pu ial

:-A4

3!

1. Introduction to MICROS/SAM2S

The MICROS project is exploring ways to organize networks of thousands of com-
puters (network computers) to solve large problems. Its main goals are to develop a
portable distributed operating system (MICROS) that can efficiently control many
different network computers and to produce cost-effective network computers that pro-

' " vide high-throughput for large classes of applications, that extend easily to form more
powerful systems, and that are always available to users at acceptable processing rates
even after component failures.

A network computer consists of many computer nodes, each with its own primary
memory, physical clock, and attached peripherals. Nodes are embedded in a network of
communication links over which messages are exchanged to share data from the
separate memories. A global decentralized operating system, with some code resident in
every node, unifies the nodes into a single computer system. The global operating sys-
tem strives to provide network computer users with a powerful computing facility that
can be accessed as a single virtual multiprocessor without regard to physical locations
within the network.

Modula-2 10 is a high-level, general programming language that facilitates the
building of simple and practical programming support systems. The Stand-Alone
Modula-2 System (SAM2S) is a portable, highly-modular concurrent operating system.
SA.M2S was developed initially to assess Modula-2 as a language for writing large sys-
tems and to provide portable software for Modula-2 programming support workstations.
SAM2S was first developed for DEC LSI-11 workstations and later ported to
Heurikon/Motorola 68000 workstations. When replicated in every node of a network
computer, SAM2S forms the locally resident portions of the MICROS distributed
operating system.

2. Stand-Alone Modula-2 System (SAM2S)

The originally released Modula-2 system (M2RT11) 11 is a Modula-2 programming
support environment targeted for DEC PDP-11 and LSI-I1 systems and dependent on
DEC's RT-11 operating system for services such as file access, editing, and I/O han-
dling. The MICROS research group developed the first single-machine version of the
Stand-Alone Modula-2 System (SAM2S) for the LSI-11 by writing standard Modula-2
library modules for all the RT-1I services used by M2RTI1. SAM2S was first
developed mainly to see if Modula-2 was adequate for producing entire operating sys-
tems for programming support workstations. It has proved more than adequate. The
original version of SAM2S actually runs slightly faster than M2RTII, primarily because
all service routines are kept resident by SAM2S and not paged from disk as for RT-1I.

* @The small memory (60 KB) addressable by the LSI-11 limits the size of tasks run
under the LSI-11 version of SAM2S to about 30 KB. In practice, this means that we
could edit and compile simple modules under the LSI-11 version of SAM2S, but had to
rely on M2RTII to change large modules such as the passes of the compiler itself. Since
the two systems run on the same processor with exactly the same file format, switching
from one to the other required only a single 'boot' command. The lack of memory space
on the LSI-11, especially as we began to write and test communication software, led us
in 1983 to port SAM2S to workstations based on Motorola 68000 processors.

?S . -. , . --.-. -.-... ,.-.- , -. -,,., .,, -, , ---.,.... , -, , -. . .? . .,.,-:?.. .? ,..

,-* . . - - T - - w rr. WV , c2 . - - c.=- C C 'rrr -- • r 'x F'." .• r -v*' -

4

SAM2S has been designed to provide both a stand-alone programming support
environment and a module library that can be the basis for the locally resident portions
of the decentralized MICROS operating system. Each SAM2S instance on a single pro-
cessor is a concurrent system, but not a distributed one. However, the SAM2S design
emphasizes flexibility in communication whether on one machine or many and includes
ethernet drivers, Xerox communication protocols 12 and DoD standard TCP/IP proto-
cols.

2.1. SAM2S Design Principles

SAM2S is a highly portable, independent Modula-2 programming support environ-
ment based on a modularized kernel task running on a process-multiplexed microcom-
puter. The design for SAM2S uses many advanced features of Modula-2. SAM2S
benefits heavily from high-level device drivers and from modularization facilities that
allow definition of hidden and hierarchical type managers as well as layered tasks for
both system and users.

2.1.1. Hidden Type Managers

The existence of a module facility does not automatically assure software modular-
ity. Some programming standards are needed. For example, SAM2S code avoids both
exported variables and nested modules. Module structuring in SAM2S is based on
abstract data types, encapsulation concepts, and information hiding principles' 3 ' 14

A module should be designed to encapsulate one abstract data type, which imposes
modular structure on data and characterizes all allowed operations and values. Each
instance of a type is referred to as an object. The procedures in a module that define all
operations on an object collectively form the type manager. Basic operations include
creation, manipulation, and destruction of objects.

Hidden types in Modula-2 are declared only by name in the type definition module.
The component substructure for the type is fully declared only in the implementation
module. Hidden type objects are completely encapsulated. Only operations defined by
their type manager can access or change them. Other modules do not know their struc-
tures and cannot directly manipulate their components. That hidden objects must con-
tain all their own state information also allows their type manager to synchronize
accesses efficiently. Process blocking is reduced by enforcing synchronization on indivi-
dual shared objects only, rather than on the shared manager itself, as is done using
monitors.

2.1.2. Hierarchical Type Managers

Two goals of type manager design are simplicity and generality. Simplicity
demands a small module with a clean and readable structure. Generality means that
each type manager should support an elaborate type with widely useful operations.
These two goals usually are in conflict. Both goals can be achieved using
policy/mechanism separation and hierarchical type managers.

With policy/mechanism separation, lower levels of the system focus on providing
general mechanisms that are as devoid as possible of embedded control decisions, so

higher levels have maximum flexibility in choosing policies. Type managers should be
designed to adhere to the type policy determined by indicators within the object state.
Their mechanisms must accomodate all allowed type policies.

With hierarchical type managers, a first-level manager handles the basic version of
a general type. A second-level type manager uses the facilities of the first-level
manager to offer more advanced operations and to support an extended type. Even
higher-level managers may be defined. An example is a process type manager which
provides basic operations like create, suspend, and resume. A more advanced manager
uses additional information in each process object for synchronization.

2.1.3. High-Level Message-Oriented Device Drivers
Physical and logical devices can be regarded as hidden types requiring storage

access, data transfer, and synchronization facilities. Physical device drivers manage the
details for peripheral devices. Logical device modules support available I/O formats for
character and block-oriented devices and interact with physical device drivers. Each
device module is an active type manager since it contains one or more processes for dev-
ice handling and user interactions. In SAM2S, the only processes that are genuinely

* ". concurrent are physical device processes that do real I/O by using the IOTRANSFER
1mechanism. All other processes are preemptively multiplexed by a time-slicing

scheduler.
Device modules are written in high-level Modula-2 code, instead of assembly

language, greatly easing system maintenance. Each device driver requires about 500
lines of Modula-2 code. Device drivers use low-level machine access facilities to mani-
pulate device registers. Depending on the exact configuration of SAM2S, I/O service
requests may be made directly through procedure calls, locally by interprocess messages
using simple queue interfaces, or remotely through socket interfaces by messages from
processes on other computers. Although the message interfaces for I/O are slower than
direct entry procedures, they are extremely flexible and make it easy to reconfigure
SAM2S for differing devices.

2.1.4. Layered Tasks
A task, or concurrent program, is a software structural unit built from one or more

modules. Each task is a separate loading unit. Processes within a task are scheduling
units that execute on a single host. Processes communicate and synchronize by passing
messages and sharing objects. Linkers, editors, filers, and debuggers are common library
tasks.

In Modula-2 systems, a task is specified by the hierarchy of module import depen-
dencies that starts from the main module. The modules forming a task are linked
together as an overlay onto a host. Normally, the operating system kernel forms the
basis for all other task overlays. Other tasks are loaded in layers above it and access its
modules by imported procedures. Where there is a system configuration choice of
different implementation modules for the same type manager, one has to be specified.

,. Linking the chosen modules automatically selects any library modules that they import.
Modules that are needed by higher-level tasks, but have already been provided for

'.. ,.

- . 1% * c. -. C.-*' -

n 6

lower-level tasks are not linked again.

The main program module, base task, and selected module choices are presented to
the SAM2S task linker to produce a relocatable load unit. The linker manages the

, . module and task libraries, typechecks intermodule interfaces, and places the resulting
load file in the task library. The file contains information for controlling task loading.

SAM2S supports the open system concept 16 which blurs distinctions between sys-
tem and user tasks to enhance system flexibility.. The operating system is viewed as a
collection of possible facilities that users can selectively include. Unneeded facilities
cause no runtime overhead. All module interfaces are available to users. Hierarchical
type managers allow users to select interfaces suitable for their application. Code for
modules that are heavily shared among tasks is not repeated, reducing task sizes and
increasing memory utilization.

2.2, SAM2S Organization

SAM2S runs on development systems based both on the DEC LSI-11/23
(SAM2S/LSIII) and the Heurikon HK-68K board version of the Motorola 68000

-" (SAM2S/68000). The LSI-11/23 workstations contain only 60 KB of memory, severely
limiting task sizes for SAM2S/LSIll. However, there is no similar constraint on the
Heurikon HK-68K workstations. Each currently has 256 KB to 768 KB of memory.

The overlay base for the SAM2S system is the highly modularized Kernel task.
.- Most of its modules are hidden type managers. They are available to user tasks also.

For SAM2S/LSIII, the Kernel task is generated by merging it with a language support
subkernel of 1,000 assembly instructions that provide runtime trap handling and corou-
tine process primitives. For SAM2S/68000, the Kernel task contains the MC68000
module written mainly in Modula-2. This module provides runtime facilities similar to
those of the LSI-11 assembly subkernel. The Modula-2 CODE procedure is used to
generate about 800 lines of assembly code at specific points in the MC68000 module.

The following sections describe kernel modules in functional groups. Figure I
shows the groups of modules in the SAM2S/68000 kernel task. Differences between the
two SAM2S implementations occur only in the low-level kernel support modules and in
the physical device drivers.

2.2.1. Kernel Support Modules

Low-level kernel modules are machine dependent. In SAM2S/LSIII, the LSIII
module encapsulates the architecture of the LSI-11/23 microprocessor. It defines
machine specific trap and peripheral addresses that are also used by the assembly sub-
kernel. The MC68000 module in SAM2S/68000 provides similar trap and peripheral
access services. On each system, the Exceptions trap handling module is closely coupled
to the basic trap facilities in the low-level machine module.

U'

4 -. ..

00
V4 4 d

C#) 0 0 to

Vd I.. 0 4
0~~& to U. U (

I to0 0 0 I=4
4c co U IV0 V 0 U 0

1.0 LO =~ 0 toc
0G 0J 1 a - z ,

C ~ ~ b 0 0~

x05. V) 01 to 0 ' 0 0
"0 04 LO 0) 9z -i (a 0

4.a '4 to r r

Ad 1. ca r- ZO to. toi ua 0
v . 0 N v m, ci IV

0 ~ ~~~ to. 0. - 4 b ~ 0
'4~~~~& W 43 i W~ 4 0 .

'4~~t 4) 4) (a ~ 0) 1

dz '44 q- '4 '4 +2 04 bp DP%

0 0 -j tj N 0.L W

0 ~ s 4) (4 to 0 U C2 .).
~~~~ 43 u ka c ~ aru r

0~~~ 0 040 ~ I 00 '(0

0~ u4 r. 0~ '4 k 4) + ,4 0 r_ r,
0& .I0 d - I

4a v d. - . a o L
0 : 0 > u- &. '4 0 I0 0

'4 0 k4 ' -4 LI I I ' 4 ( ) 0 a 4

a 0 0 .~2 v U u 00

T4 W) a 0 U LI "

0p vI u 0 0 5. 0% 0) '4 a 0 i 4 2

d '4 4 0~ 0 6 43 4) '40W >) 04 V3 '4 in.'I4 4 '4



The SystemTypes module exports basic constant and type declarations used
throughout the system. Grouping common declarations into a single module lessens the
number of interfaces that have to be imported by most modules. Memory management,
including compaction, is provided in the kernel by the Memory module. Available
memory is managed as a dynamic heap using a circular first-fit algorithm.

-.. The structured data type modules are hidden type managers for abstract data
structures needed by the kernel and by user tasks. For example, the Lists module can
efficiently manage LIST objects created as a regular list, a descending or ascending
priority list, a circular list, or a stack. The Maps module manages MI'VAP objects, which
are dynamically varying lists that associate an index for a hidden object with a unique

"-:. identifier. Sets and caches of network communication addresses are maintained bv the
AddressSets and Caches modules. Other structured data types include queues and char-i. acter buffer rings.

2.2.2. Process Interaction Modules
Process interaction facilities are provided by a hierarchy of type managers. The

Processes module provides the basic PROCESS type and standard operations including
process creation, blocking, resumption, suspension, and termination. Priority lists are
used for process scheduling. Spawning of processes forms tree hierarchies used for pro-
cess control and termination. Processes can be synchronized by use of the Signals,
Gates, and Semaphores modules. Signals are events or conditions on which processes
can wait and about which they can be notified. A SIGNAL object manages a list of
processes queued on the associated event. A GATE object is used as a binary sema-
phore to support mutually exclusive access to shared objects or code sections. It can be
used to implement monitors. More elaborate synchronization can be achieved with the
general SEMAPHORE type that provides conditional blocking of processes. Other syn-
chronization types include event counts and sequencers.

The Names and Groups managers provide services for registration and lookup of
symbolic names. The NAME type associates the name string for an object with its attri-
butes, access capabilities, and unique identifier. A capability contains addressing infor-
mation and possibly object access rights. To provide for hierarchical name spaces,
groups of names are managed in tree directories. The GROUP type supports none, one,
or more associated NAIEs. Symbolic names can be searched for on the top level of any
specified subtree or recursively throughout the subtree.

Communication facilities are provided by another hierarchy of managers. The
Ports module uses Queues to support either First-In-First-Out (FIFO) or priority ports
for sending and receiving local messages. It controls port access rights, message for-
warding, and conditional passing of messages. For network communication, the Net-

@1 •Types module declares common addresses and services. The Sockets type manager pro-
vides location-independent general message transfer services either locally, within the
same host computer, or remotely, between processes on different hosts. A SOCKET is a
bidirectional port used as an end-address for sending and receiving messages between
processes. The Transport and Routes Modules provide for forwarding of packets over
the communication subsystem.

".%

, . . ./. . . . . . . a .•a a



r --U --s - -- -- - -- -- -- ",- . -.7 C -- - - -' . --

9

To provide type uniformity for messages, Ports and Sockets directly manage car-
riers, which are standard headers for messages. Information in each carrier includes
source and destination addresses, a unique message identifier, the message type, and a

- pointer to the message itself, if it exists. Empty carriers can be posted in ports for
incoming messages. The Messages module provides packaging facilities for marshalling
and unmarshalling data into and from packets used for remote procedure calls.

2.2.3. I/O Service Modules

I/O services are provided on three levels of abstraction: physical, logical, and vir-
tual. Users interface at the virtual level for file and terminal services. The virtual level
passes user requests as procedure calls or messages to the appropriate I/O format
module on the logical level. The logical level interfaces with the appropriate physical
I/O driver by messages using either communication or queue services.

The DeviceTypes module declares constants and types used by the physical and
logical device modules. At initialization, device drivers configured in the kernel task
register their existence with the name manager to give users dynamic access to I/O ser-
vices. Device modules request I/O services and post results by using the IOREQUEST
type as a standard message.

Examples of physical drivers for SAMX2S/LSII1 QBUS-based devices include a DEC
DLVIIJ serial driver. RX02 and RP02 disk controllers, and a QE3C400 ethernet con-
troller. The DLV1IJ driver manages up to four serial lines and provides type-ahead ter-
minal handling using a RING object for a character buffer. The RX02 floppy disk con-

a 169 MB Fujitsu Winchester disk. QE3C400 interfaces to one or two 3COM ethernet
boards used for network computer communication.

Functionally similar physical drivers exist for MILTIBUS-based devices in
SA\2S/68000. The SCCZ8530 module drives the Zilog serial communication chip on
the Heurikon HK-68K board. It also handles up to four serial lines. SAM2S/68000 has
a controller for a Priam 70 MB winchester disk, for several other disks (Vertex, Micropo-
lis) and for the four direct memory access (DMA) ports on the Heurikon board. The
DMA module supports efficient copying of blocks of data for both disk and ethernet

,. facilities. ME3C400 provides a dual ethernet interface for SAM2S/68000.

Logical device modules include handlers for serial terminals and disk formats. The
logical devices are independent of actual physical interfaces. The RTllFiles module
handles RTll directory and file formats. A UnixFiles module could be substituted to
handle Unix format files. ADM31Lines and VTlO1Lines control .N131 and VTI01 ter-
minals.

The virtual level modules provide abstract services to their clients. The Times
module provides time and timeout facilities using the KWIIL and Z8536CIO physical
clock drivers in S.AM2S/LSI1I and S.AM2S/68000, respectively. The Files and Lines
modules provide an abstract file and serial line interface for users. These modules direct
user requests to the proper logical device modules.

; 1E'r



. _ - - _ , . =- .- J - :. _ -J - •

10

2.2.4. Node Control Modules

The ResidentMonitor executive module receives control after kernel initialization
and monitors the execution of user tasks. It interacts with the command interpreter and
kernel loader to load, execute, and terminate relocatable user tasks on SAM2S. At
present, a single user code file at a time may be run. The file name serves as a load
command.

2.2.5. SAM2S User-Level Tasks
Additional library modules are available for tasks run at the system user-level.

Some allow changes to file names and options. File I/O can be abstracted into charac-
ter I/O by using Streams. The Strings module supports standard operations, such as
extract and concatenate, on strings represented as character arrays. InOut provides
transparent access to characters on either files or terminals. SAIM2S supports a five pass
Modula-2 compiler, a task linker, link and load file decoders, a mini-core debugger, a
static symbolic debugger, a filer, an import dependency charter, and other utility tasks.

3. SAMI2S/MICROS Network Status

The Stony Brook network computer is based on Motorola's MC68000 and Digital
*Equipment Corporation's LSI-11/23 hosts interconnected by 1OM-bps Ethernet chan-

nels (Figure 2). The nine existing hosts are used as programming support workstations
controlling one or two terminals (designated T in the figure) each. Each MC68000 host
has .25M or .75M bytes of memory, but each LSI-11 has only 64K bytes. There are
four Ethernet channels in the configuration. Each host is connected to two channels at
most.

Some hosts have Winchester disks (designated W) and some dual floppy disk drives
(designated F), but two MC68000 hosts (8 and 9) have no attached disks. The flexibil-
itv of interfaces in Micros allows diskless MC68000 hosts to be booted remotely with
files supplied from a disk on another \1C68000. Individual application programs can be
remotely loaded into any of the MC68000 hosts. One MC68000 (host 4) controls a color
monitor (designated 1) that shows Ethernet traffic among network computer hosts on
its two directly-connected channels. Packet glyphs move nearly in real time, with just
enough slowing for humans to see. The Vax-750/Unix system on channel 1 is used for
cross development, object downloading, and remote file transfers through host 3.

SA.\12S has successfully been ported from DEC LSI-11/23 computers to the
Heurikon/Motorola 68000 single board systems within the Stony Brook network com-
puter. On the ethernet links between network nodes, SAM.\2S uses flexible communica-
tion techniques including location-independent sockets, remote-procedure-call interfaces
for file services, standard Xerox Network System (XNS) packet transport protocols 12

and most recently the DoD standard TCP/1P protocols for network communication.

,/A



T T T

M6KMC6BK] MC68K -F
8 4l

T T

2

F
VRX-750 L51-11

UNIX ' I

Legend:F
T -Terminl 

MC68K
W- Winchester 6T
F - F)loppy
M -Monitor

F
L51-11

2

T F TT

MC68K MC68K MC68K
9 7 51

4

S1 3

Figure 2. 5-tony Brook netcornputer of four Eihernets



• .-. 12

Besides the original LSI-11 compiler from Wirth at ETH-Zurich and a VA.X/VMS
Modula-2 system from the University of Hamburg, there are several locally developed

lModula-2 compilers that are being used to port SAIM2S to other machines. The most
heavily used is a V.AX/LNX cross-compiler that produces 68000 machine code. A
translation of this compiler from Pascal into Modula-2 allows compilation directly on
SAM2S/68000 systems. There is also a Modula-2 cross-compiler system running on
V.AX/LNX systems and generating code for the Intel 8086 and 80186 processors.

."1The original version of MICROS 1' 8 was a modular, distributed operating system
written in Concurrent Pascal10 and assembly code. It ran on a network of DEC LSI-11
systems. With the addition of network communication modules and remote services
between nodes, S.A\12S has become the local operating system portion of MICROS. This
new version of MICROS is written completely in Modula-2 except for a few hundred
lines of assembly code. Its design emphasizes portable, transparent control structures.
Control in MICROS is decentralized and distributed 0 ' 21 throughout the system as
groups of cooperating tasks.

The new MICROS system contains more than 100,000 lines of local code. Except
for the cross-compilers, almost all is written in Modula-2. The local operating system
kernel, support and communication modules for SAM2S/LSI11 consist of 23,000 lines of
code: similar modules for SAM.2S/68000 take 27,000 lines. About 18,000 lines are identi-
cal in the two systems. The common but different 5,000 lines handle low-level system
features and drivers for the almost disjoint sets of peripherals. The extra 4,000 lines in
SA.\M2S/68000 are mainly a hardware-level debugging monitor for the 68000 processor
and the more extensive network communication modules that the larger 68000 memory
allows. The working cross-compiler for the 68000 and its translation into Modula-2
together take about 40,000 lines. The linker, loader, filer, editor, and other user-level
system programs require about 9,000 lines. Each SAM2S system has about 7,000 lines
of machine-dependent modules in its compiler, linker, and loader. There is another
20.000 lines in the code-generation passes of the compilers for the 80186, V.A X-11, and
16000 processors. In addition, there is about 30,000 lines in LSI-11 compiler,

. linker/loader, and debugging utilities obtained from Wirth. More than 50,000 lines of
high-level code were added to MICROS in 1984 alone.

4. Conclusions from Porting SAM2S

We have found Modula-2 much better for writing system code than the combina-
-1 tion of Concurrent Pascal19 and assembly code that we used for the first version of

MICROS during 1978-81. The Modula-2 system, running on the same LSI-11 proces-
sor, is faster by a factor of 4 to 10 in several modalities. The 68000 version is even fas-

" ter. Compiler and system code run faster since native machine code, not interpreted
P-code, is produced. Flexible, selective synchronization operations defined by library

- w modules allow faster execution of highly concurrent systems than do Concurrent Pascal
monitors, which block processes too indescriminately. System errors can be located
much faster using the post-mortem symbolic debugging system that is part of the
Modula-2 task library. System corrections are faster because only a few modules, not
the entire system, must be recompiled for each set of corrections, since there is

0type-checked, separate compilation of Modula-2 modules. System development by a

* *°-*. .**-

.4;. . -. . * - -.-- *K:- *-- .*
1. . . . . .. . . . . . . . . . . . . . . . . . . . .



"ll~~ ~ ". V% t

13

group is faster since only definition modules providing the interfaces between modules
need to be approved before all progammers can start producing and compiling code.

The tiny runtime system, small compiler, and use of device interfaces written in
high-level code all greatly simplify the porting of Modula-2 systems. We did not
encounter major problems in porting SAMI2S to 68000 systems. A few high-level
modules have been changed slightly to make them truly machine-independent. Almost
all the changes have involved the consistent use of long and short variants of integers
and cardinals on the two systems. Communication between heterogeneous computers
requires an external standard for the order of byte transmission. We have chosen the
Xerox ethernet standard of high-byte-first order, as it also is for the 68000 microproces-
sor. Bytes are reversed in order as they enter or leave any of the LSI-11 systems. Port-
ing SA\M2S to a new computer requires rewriting of about 7,000 lines for code genera-
tion and loader modules, 1,000 lines for low-level kernel modules, and 1,000 to 4,000
lines for new device drivers.

Use of Modula-2 allowed us to port SAM2S from LSI-11 to 68000 systems in six
months. It has allowed us to combine the efforts of dozens of student programmers into
a working operating system. Since ADA is essentially a superset of Modula/*-2, the
design features that allowed easy porting of SAM2S should work equally well for ADA
systems.

5. Systems Research Using MICRO

A modular, integrated group communication subsystem has been implemented
within MICROS to provide a basis for construction of a complete MICROS network
computer system. The MICROS system must work well both on different types of com-
puters and on networks that are connected in different ways - ways not known while the
MICROS software is being written. Distributed control algorithms already designed for
MICROS have included a Focus 22 initializer that transparently forms of a network-wide
hierarchical control structure and a distributed Wave Scheduler2 3' 2 that assigns idle
nodes to task forces. The wave scheduling technique relies on a control hierarchy,
includes mechanisms for avoiding static deadlocks, and can extend to any size network.
We also have begun evaluation of other decentralized algorithms for management of glo-
bally shared system resources in large network computers with thousands of nodes.

Figure 3 shows one use of overlapping communication groups within a decentralized
control hierarchy. Each triangular boundary encloses two groups. The working group
consists of a number of sibling nodes plus their common parent. The recovery group
adds the grandparent to the parent and siblings. The siblings execute user and manage-
ment tasks as requested by the parent. To avoid overloading the parent during normal
working conditions, the siblings pass to their parent only task results and summaries of
management information about lower-level groups. If one of the nodes fails, the
remaining members of the recovery group all communicate to redistribute the tasks of a
failed sibling or to elect a replacement for a failed parent. Management information in
a failed parent can be regenerated from the combined states of the siblings and

*: grandparent. A failed grandparent is replaced as a parent by the next higher group in
the hierarchy.



0

4

P4

taa
I"U
vU

ca a

ca co

V)V



The next sections discuss efficient multicast mechanisms for sharing data among
N. groups of processors or processes in large network computers. The major recent theoret-

ical work8 in the MICROS project has been in analyzing ways in which to implement
and to use multicast communication within dynamic groups of computers in large net-
works, especially ones linked by grids of horizontal and vertical ethernets. Group com-
munication techniques developed for ethernet systems should be applicable to many dis-
tributed system environments, even those using dedicated links. The research has
included analysis of efficient network computer mechanisms to maintain distributed lists
characterizing dynamically changing groups and to multicast packets within groups.
Efficient communication in large groups can require spanning trees of multicast routing
information. Single messages multicast to processes scattered over a network can follow
tree branches and be copied at each fork.

6. Introduction to Multicast Communication

The concept of grouping processes to achieve goals is vital to distributed systems.
System services for a group help to support communication and coordination among its
members. Distributed groups are often organized to achieve parallel processing, increase
data availability, reduce response time, share resources, or increase reliability.

Processes in a group often need to multicast the same message to all other group
processes. Such messages include computation results, search bounds, state changes,
votes, and updates to replicated data. Group members may need to multicast to the
group several times during an extended interaction period. Such group multicast is more
effective if some underlying multicast structure exists for the group. However, not all
multicast techniques are effective group multicast techniques.

6.1. Packet-Switched Networks

The fundamental unit of information flow in a communication network is a packet.
. In general, packets are sent by hosts, or nodes, on communication channels, or links. A

channel can be a point-to-point link or a multiaccess broadcast bus such as an Ether-
net. Here, we consider the general model as a packet-switched network in which hosts
can store packets and forward them on their connected channels. (In subsequent discus-
sion of a specific network computer model, we refer to broadcast buses as channels.)
Packets are transported across a network in datagram mode, that is, with a "best effort
to deliver." Providing reliable transport of multicast packets is difficult because each
packet must be acknowledged from a possibly unknown number of destinations. Both
point-to-point and broadcast networks can be packet-switched.

A group of processes implicitly defines a host group consisting of all hosts on which
the processes execute. A host group can be designated explicitly by a list of member
addresses or implicitly by a logical group address. With lists, each group member must
maintain a list of members so it can multicast to them. A membership list is dynamic
or static depending on whether it can change. If a logical address is used, all group
members must have network interfaces that will accept packets sent to the logical
address. Each interface must recognize multiple logical addresses if its host is a member
in several groups.

W-%J

.4-%

% ..



Table 1. Relative ratingr of criteria for single multicast

Multicast Criterion

'Multicast

Technique Bandwidth Delay State Computation

Flooding gross medium nil medium

>1Separate high high high lowv

Multidestination medium medium hig-h high

Partite medium medium medium low

Single-Tree lowv medium low j low

Multiple-Tree low low gross j low



Table 2. Relative rating of criteria for group multicast

_____________ ulticast Criterion________

Multicast
Technique Preparation Maintenance Failure Scale

Floodingr nil j nil nil high

Separate medium medium low high

Multidestination medium medium low high

Ptite lowV low low medium

Sing-le-Tree hig-h medium medium low

Multiple-Tree gross hig-h hig-h gross



I-'-"18

" 6.2. Evaluating Multicast Techniques

Evaluation criteria for a single multicast include:

Bandwidth - The communication cost of the packet headers for a single multicast. It
is the sum of the number of packets sent over all channels times the average size of
their packet headers.

Delay - The time from the start of the multicast until the last packet copy is delivered.
Packet delay per channel is assumed to be uniform. Because packet copies are sent in
parallel, delay is a maximum, not a sum. Techniques that minimize delay tend to max-
imize bandwidth and vice versa.

State - The summed cost of storing the information that allows members to multicast
to the group. It can include logical identifiers, lists of member addresses, or forwarding
sublists forming previously built multicast structures. The state information should be
bounded.

Computation - The processing cost for a single multicast. It includes calculation of
intermediate destinations and update of multicast state information.

Evaluation criteria for group multicast include:

Preparation - The initial cost of distributing multicast information to all members. It
may include building a structure to lower average cost per multicast.

Maintenance - The cost of adapting multicast information as members join and leave
- the group.

Failure - The cost of recovering from the failure of a network host or channel.
Failures may require routing around failed components or repairing multicast structures.

Scale - The sensitivity of a multicast technique both to larger groups in a fixed-size
network and to fixed-sized groups in a distributed system of increasing size. Scale
should be at most proportional to the increase in size.

Tables I and 2 rate six types of multicast techniques against these criteria for single
and group multicast, respectively. Most of these techniques, which include flooding,
separate addressing, multidestination addressing, partite addressing, single-tree forward-

- ing, and multiple-tree forwarding, are adaptations of their broadcast counterparts. All
techniques are evaluated for a large multicast group.

"' The five relative values per criterion are nil, low, medium, high, and gross. Low,
medium, and high ratings are always given to some technique. The nil and gross ratings
are used only for exceptional cases. A "utopian" multicast technique would have all nil
ratings.

6.2.1. Flooding

Flooding is a brute-force technique for packet multicast is to broadcast identical
packet copies on all channels. Each receiving host forwards copies to all its other chan-

nels. Only group hosts keep a copy of the multicast packet.
This scheme is very simple. State, preparation, and maintenance costs are negligi-

ble and network failures have almost no impact. However, the very name of the tech-
nique reflects its major disadvantage: it floods the network with packets. The delay

4

..



_P1. V19. 'W-I -V-I

rating is medium because heavy loads slow channel access. Bandwidth use is extremely
high, since packets are duplicated on multiple channels. Bandwidth waste increases
with network size, causing a high scale rating. Such gross bandwidth usage is not

I' justifiable for multicast.

For flooding to be practical at all, packet lifetime must be limited to prevent end-
less duplication. Solutions include recording packet sequence numbers to prevent
retransmission and discarding packets after a fixed number of relays. However, the
bandwidth is always high.

6.2.2. Separate Addressing

Separate addressing is a obvious technique for multicast is to send a separately
addressed packet to each destination. Each member maintains a copy of the entire
group membership list, which is acquired during group preparation. A large group has a
large membership list, so the state and scale ratings are high. However, network failure
has little effect.

The major disadvantages of this technique are its high bandwidth and high delay.
Several copies differing only in their destination addresses are often sent on the same
channel. The multicasting host sends packet copies sequentially, so delay can be high.
However, this technique is suitable for groups with few destination hosts.

6.2.3. Multidestination Addressing
This multicasting technique sends a few multiply addressed packets, for each multi-

cast. Each packet header includes a subset of the destination addresses. When a packet
arrives at any host, its destination addresses are apportioned among multiple copies.
Destinations with the same route share the same copy. Packet copies are forwarded to
all destinations.

Multidestination addressing is hard to support because of the need for variable
sized packet headers. Because of address apportioning, this technique has a high com-
putation rating and a medium delay rating. A minimal number of packets are sent, but
bandwidth use is medium because of their large headers. The state, failure, and scale
ratings equal those for separate addressing.

6.2.4. Partite Addressing
This method is a combination of the separate and multidestination addressing tech-

niques. Host destinations are partitioned by some common addressing locality, say, sub-
nets or channels. Separate packets are sent to each partition for final deliverv to all
local hosts. During group preparation, each member receives a copy of the partition list.
This technique is especially useful for broadcast internets (multiple Ethernets), with
hosts partitioned by their channels.

This technique is highly resilient against failures. It has a medium state rating,
since all members list only the channel destinations. It uses medium bandwidth, since
several copies to different channels may be sent on the same initial channels. The delay
is only medium because the multicasting host builds and sends fewer packets than in
separate addressing. Adding hosts to the group may not increase the number of channel

'p'7

"p.

Ui '' " •:"' '" " ' ""' "" " " "' " " "" "" """'-"":""':""" """ "' " "



r'. 20

destinations, so the scale rating is medium. This technique is suitable for a group that

resides on a small number of channels, even if there are many hosts.

6.2.5. Single- and Multiple-Tree Forwarding

This technique builds a spanning tree for the hypothetical graph of network hosts
connected by channels and forwards packet copies along the branches. Each host
member maintains and uses an image of only the local branches, making forwarding
computations simple. Three main types of tree structures have been investigated: shor-
test path, minimum spanning, and centered.

-. A shortest path tree is one with the shortest possible path from the root host to
any other tree host. Multiple shortest path trees25 minimize both delay and bandwidth
but have a gross state rating, since each member has a separate tree. The preparation
rating is gross for multiple trees because they are difficult to build in a distributed
manner. Maintenance can use the existing trees and is rated only high. Tree table

,. space is proportional to the square of group size, so the scale rating is gross.

Another technique, called reversed-path forwarding,2 5  simulates multiple trees
without actually maintaining them by using routing tables and two additional lists. 26

However, this technique may not deliver some packets if routing tables change during
*forwarding.

*A minimum spanning tree25 has the least total branch cost of all spanning trees. A
centered tree26 is a shortest path tree rooted at a host "in the center" of the group. A
single tree minimizes both bandwidth and state but has a medium delay rating because
not all paths may be minimal. However, a centered tree has only marginally better rat-

ings than a minimum spanning tree: The preparation in building a single tree is high,
but maintenance is medium and scale is low. Although sensitive to failures, trees form
an excellent structure for group multicast. In general, trees have the lowest bandwidth
and delay ratings. Trees are particularly suitable for point-to-point networks.

The major problem with host tree forwarding on broadcast internets is that
separate packet copies are sent to each host, not to each channel. In addition, a span-
ning tree specifies intermediate hosts between member hosts. Allowing the use of alter-
nate paths between members would be less failure sensitive.

A good solution to both problems is to span a logical tree over channels and not
over hosts. Packets can be forwarded to channels and then to hosts, as in partite

addressing. The tree spans only member channels; physical paths between them are
decided by runtime routing. (The use of channel-based trees is further described later.)

7. The Network Computer Framework

A network computer is physically distributed like a local broadcast internet but
. provides its users a single virtual computer like a multiprocessor. It has three types of

communication resources: channels, hosts, and sockets (Figure 4). A multiaccess broad-
cast bus with short transmission delays is referred to as a channel; a host is a processing
node; and a socket within a host is a process address. There are physical and logical
addresses for each resource type. A physical identifier refers to a specific instance of a
communication resource; a logical identifier refers to a group of them.

"4

:0



is 25 35 45
V..0 0

0 0 0
S0.

5 

P.

16 26 36 46

0 0 0

6
17 27 37 47

0 0
0 0

7
1826 38 <I48

I 0

I~~~ ChneI os ok

Ihy IIclFoln hsIc I

Chann el Intefac ock

Idenrtifier Identifier

Figure KRn example of a netcomputer

Pu7,



22

A broadcast bus supports logical addressing of multiple hosts. Network computer
addressing conventions, based on those for internets in Xerox network systems, 27

extend logical host addressing over the entire network computer and provide for logical
channel addressing. Each network computer address consists of channel, host, and
socket identifiers. Since variable-sized packet headers can cause severe buffering prob-
lems, each packet header is assumed to have only one destination address.

7.1. Channels

A network computer can contain a large number of channels, such as Ethernets. 28

Each channel has a unique, 32-bit physical channel identifier in an unambiguous flat
addressing scheme. Physical channel identifiers are used mainly as designators for net-
work computer routing. The physical channel identifiers in Figure 4 are arbitrary.

A channel interfaced to a host via a transmission front-end is said to be directly
connected to that host, otherwise it is distant. In Figure 4, channel 8 is directly con-
nected to host 18, and channel 3 is distant. A channel can be directly connected to
many hosts; a host can have several directly connected channels. Figure 4 depicts a grid
network computer in which each host has at most two directly connected channels,
nominally vertical and horizontal.

7.2. Hosts

A network computer can contain a large number of hosts. Each host has a unique,
48-bit physical host identifier. Network computer physical host identifiers are absolute
and implement a flat addressing scheme that is independent of the channel addressing
scheme and can be used in the generation of other unique identifiers. Each host gives
its physical identifier to all its attached front-ends as its host address. In Figure 4, each
physical host identifier is conveniently chosen as the concatenation of its two physical
channel identifiers.

7.3. Sockets

A socket represents a bidirectional port, within a host that serves as a source and
destination for packets. Packets can be both delivered to and transmitted from a
socket. A host can support a large number of sockets. Each host can receive packets
addressed to its sockets through all its directly connected channels.

Each socket has a 32-bit physical socket identifier that is globally unique, but
ephemeral. It is generated uniquely by incorporating the unique part of a physical host
identifier. For a 48-bit Ethernet address, this part is 20 bits long. A logical socket
identifier designates a group of one or more sockets in one or more hosts. It is needed
for all group members to receive a multicast packet on the same socket address.

8. Packet Cast

Since a network computer can be configured with an arbitrarily large number of
channels and hosts, it can be quite large and the packet transport mechanisms quite
complex. The transport of packets is done by a network level functionally comparable to
the OSI network layer,29  but without the strict interface boundaries. Packets are

a.

..................................................................................



23

transported across a network computer as datagrams.

, Packet transport on a network computer is oriented mainly toward channels.
Packets are transmitted on, switched among, and routed to channels. Routing to chan-
nels and not to hosts provides an order of magnitude reduction in the routing informa-
tion required on each host." Another order of magnitude reduction can be achieved by
partitioning routing information among all hosts on each physical channel.

A single channel provides an excellent architecture for multidestination communica-
tion but has limited extensibility. Providing multicast communication on a network
computer is harder. since packet casting on distant channels requires support. Require-
ments for packet casting on a network computer may be as simple as packet transmis-
sion to a single destination host on a directly connected channel or as difficult as tran-
sporting packet copies destined for a group of hosts on several distant channels. Packet

,-' casting is channel oriented, for efficiency. The type of packet casting is based on the
location of the destination channel relative to the sender: physical, directed, or logical.

8.1. Physical Cast
cast Advanced transmission media such as Ethernet channels28 directly support broad-
cast and multicast transmission. Physical cast is the transmission of a packet by a host

r. on a directly connected channel and is triggered when the physical channel identifier of
a directly connected channel is addressed.

8.2. Directed Cast

Physical cast provides for packet delivery only on a directly connected channel.
There is also a need to direct a packet to a distant channel, which can be accomplished
if the network level provides packet routing services. Each host can transport packets
to a distant channel by physically unicasting them to an intermediate host for relay.

In directed cast, a packet is cast to one distant channel. 30 This type of packet
K" casting is used for sending a packet whose destination address contains a physical chan-

nel identifier of a distant channel. Directed cast is a generalization of physical cast. It
is done by a series of packet unicasts through intermediate hosts toward its final desti-
nation channel. Any host receiving the packet on the destination channel uses a final
physical cast to deliver it to the destination hosts on that channel.

8.3. Logical Cast

* Directed cast provides for packet delivery on only one channel. Multidestination
communication sometimes requires casting packet copies on a number of physical chan-
nels. Here, the network level provides packet propagation, or forwarding, services. For-

- warding services enable each host to propagate packet copies simultaneously to a set of
Sphysical channels.

Logical cast is a packet cast directed toward a local set of physical channels associ-
ated with a logical channel identifier given as a destination address. It results in a series
of directed and physical casts of packet copies. A host performing a logical cast sends

=- .w packet copies to the physical channels in its set of forwarding destinations. If a destina-
. tion channel is distant, its packet is encapsulated for relay through intermediate hosts.

.

S!

. .*o44... ... .



24

When a packet copy arrives at a host that is directly connected to a destination chan-
nel. a physical cast is done.

Figure 5 shows a logical multicast from host 17 that involves a directed multicast
to channel 2 via relay 27 and several physical casts. A socket marks each group host:
15, 17, 18 on channel 1; 26, 28 on 2: and 36, 46 on 6. The directed multicast from 17 to
channel 2 starts with a physical unicast to relay 27, followed by a physical multicast on
channel 2 to members 26 and 28. A physical multicast from 17 to channel 1 reaches all
three members there. Host 16 also accepts the packet to forward it on channel 6 by a
physical multicast that reaches 36 and 46.

9. Group Multicast Techniques on Network Computers

Since a network computer is also a packet-switched network, three group multicast
techniques (separate addressing, partite addressing, and single tree forwarding) are also
suitable. Flooding, multidestination addressing, and multiple tree forwarding are not
acceptable because flooding has a gross bandwidth rating, multidestination addressing
requires variable-sized headers, and multiple trees are too expensive to build and store.

The distance from a source host to a destination host is the minimum number of
-.. directly connected channels forming a path between them. The distance between two

hosts on the same channel is one: between a host and itself, it is zero. For example, in
Figure 5, the distance between hosts 18 and 36 is two. The distance between a host and
a destination channel is one more than the distance between the source host and the
closest host on the destination channel.

The distance function is useful mainly for computing the bandwidth of a multicast.
For packets with unit size headers, bandwidth is the sum of all channels traversed as
part of a packet cast. The bandwidth of physical cast is one, since only one channel is
involved. The bandwidth of a directed cast is the distance between the source and des-
tination. The total bandwidth of a series of directed casts is the sum of the individual
bandwidths.

For delay computation, each packet sent or received is assumed to cause a delay of
one time unit. Each host that has two directly connected channels can send and receive
two unrelated packets in one time unit. However, receiving and then sending a packet
copy results in a delay of two units. Multicast delay computations assume optimal
packet casting order. Packets are sent to destinations in decreasing order of distance.

9.1. Host Multicast

The separate addressing technique is used for host multicast. Processes communi-
cate by multicasting to their group logical socket, which identifies the list of physical
channel-host destinations. (In Figures 6, 7, and 8, the list is (4,46), (4,47), (4,48), (5,15).

- (5,25), (5,35), (7,27), and (7,37)). To multicast a packet, a separate packet copy is sent
, by directed unicast to each physical host in the list. Each destination address is com-

posed of physical channel and host identifiers and the logical socket identifier. Each
host in the group receives the packet destined to its physical host identifier and delivers
it to the logical socket of the process group.

soktfh



-1626 36 46

17 j 27 37 47

71
a 8 2B 35 45

00

2j 3 41

Legend:
------ Loglcal mull 1cast

* Infermedlale hosf
0 0 S5ource/desf Inal Ion socket

F Igure 111 [ustratlIon of logical multicast from

host 17 to group hosts on channels L12P6

V..



15 25 35 45

................. . . . . . . . . . . . . . . . ........... .......

16 26 36 46

6
17 27 37 47

0 0 0

. . .. ....... ............... . . .................... .. ' . ... .

7
16 28 38 48

* 0

.7 2 3 41

Mu)-iple physical unicas-ts

*Infternedbafe hostf

S0 Source/destInct ion socke0t

FIgure 6. Example of host multIcas from host 46

to.g.o.p..o..s.on channls 4o5 andl 7



i . o _ ; ,-. .: - .. .. : L : d , - ,. -- =. - . : ' 
-  

= = L : - ..- (' - W ,- W - V ' = .-J I -'.--v

27

In Figure 6, a multicast from host 46 to the group requires 12 packets. There are
two physical unicast packets to hosts 47 and 48 on channel 4. Of five directed unicasts,
two are to hosts 27 and 37 through intermediate host 47 and result in four packets.
The other three directed unicasts to hosts 15, 25, and 35 through intermediate host 45
result in six packets. A maximum of 12 packets is needed for multicast from any host
in the group for this example. Ten packets from host 47 are the minimum. In the
example, the multicast delay is at best eight, since host 46 sends seven packets and the
last packet must be received. The bandwidth and delay costs for host multicast in this
example are thus 12 and 8.

Host multicast is simple to maintain but expensive to use. Although it uses only
directed and physical unicast, it has high state and bandwidth ratings. Host multicast
is useful when each group member needs an explicit list of all members for other pur-
poses. when the host group is small, or when the group exists for too short a time to jus-
tify building a more complex multicast structure.

9.2. Channel Multicast

The partite addressing technique is used for channel multicast. Each group host
maintains only the list of physical channel identifiers on which all group hosts reside.

(In Figure 7, the channel list is 4, 5, and 7.) Each host member must recognize packets
. addressed to the group's logical host identifier. To multicast a packet, a separate copy

is sent to each physical channel in the list. Each destination address consists of the
same logical host and socket identifiers but contains a different physical channel
identifier. Physical multicast is finally used to deliver the packet to all group hosts on

* - each group channel. Each host accepts the multicast packet and delivers it to the group
logical socket.

one In Figure 7, a multicast from host 46 to the group requires five packets, including
one physical multicast on channel 4 and two directed multicasts. One directed multi-
cast to channel 7 results in a physical unicast to host 47 and then a physical multicast
on channel 7; the other multicast to channel 5 similarly uses two packets. Host 47

* receives two packets: one for itself from the physical multicast on channel 4, and one for
physical multicast on channel 7. At most five packets are needed and a minimum of
four from host 47. From host 46 there is a delay of at least five to receive the last
packet of the physical multicasts on channels 5 and 7. Both bandwidth and delay costs
for this channel multicast are 5.

Channel multicast is simple and efficient if all group hosts are connected to only a
few physical channels. In particular, it is best for a single channel since only one physi-
cal multicast is required. Channel multicast provides a more complex but efficient
mechanism than host multicast. It is more complex because it uses directed and physi-

* t cal multicast. It is more efficient because only a list of all channels, not of all hosts, has
to be maintained and used by each host in the group.

•-. •

4 . b-p., ' s.

J°- A "a,. .~ ~ * / .



iS 25 35 :

;';:? -Y 0 ll'--

-::5 , m

16 26 36 ! 46
6-

%

I I .

17 27 37 47

0 0 0

I I i ,

-.-.- ! i .7!I
22 2 38 48

r-0

23 411

ILegend:> ulIpepsf):1.i# . .. ) f 1Ip)e pt,,Vs Ica? unlIca s'ts

.. Ph~s I ca I mu I f i csi't
i ! ntermedlafoe hos't

,.* 0 5ourceldesfInalion sockef

FIgure 7. Example of channel multicast from host 46

to group hosts on channels 4,S and 7



9.3. Tree Multicast

Logical multicast can be used to cast a packet on a previously built multicast struc-
ture, for example, a single shortest path tree. Logical trees are spanned over channels,
not hosts. A logical tree is built using current route information about group physical
channels. With tree multicast, each packet header contains one logical channel
identifier, designating one or more physical channels.

The principle of multidestination addressing can be used, for example, by a
preparatory procedure to build a shortest path tree spanning the channel group. Using
routing inrormation. the initiating host creates several packet copies with the destina-
tion channel addresses partitioned among them as packet data. Addresses with the
same intermediate route are placed in the same copy. Each outgoing packet is sent to
the nearest channel of its subset.

To form the image of the local tree, forwarding services of hosts on each channel of
the tree keep a list of all immediate destinations to which packets are forwarded. When
each packet arrives at any host on its destination channel, multiple copies are again
created to partition its destination addresses. Packet copies are forwarded until
received by hosts on all original destination channels. Hosts left with no more destina-
tions are on channels that form the leaves of the spanning tree. Hence, the tree building
process ends.

Forwarding services on each host maintain the list of immediate parent and chil-
dren channels that are the local image of the spanning tree. Tree multicast is accom-
plished by a series of logical multicasts of packet copies along the tree branches. Each
packet destination address is composed of logical channel, host, and socket identifiers.
Whenever a host on a destination physical channel receives a packet copy on one branch
of its local subtree, it sends copies to the other branches of the subtree. When directed
unicast is needed, the packet copy is encapsulated with a header for the physical chan-
nel destination and forwarded to an intermediate host. Eventually, the packet is
delivered on all physical channels in the group.

In Figure 8, channel 4 is the tree root and channels 5 and 7 are its children. Hosts
on channel 4 have the list 5 and 7. Hosts on channels 5 and 7 have the list 4. A multi-
cast from host 46 to the group requires only three packets. There are three physical
multicasts: one on channel 4 and two on channels 5 and 7, done by hosts 45 and 47,
respectively. Three packets are the minimum and maximum needed. The multicast
delay from host 46 is four since each packet copy to channels 5 or 7 needs to be sent,
received by an intermediate host, relayed, and received on each final destination. The
costs of tree multicast are thus a bandwidth of 3 and a delay of 4.

Tree multicast is useful for long-lasting groups with members scattered over many
physical channels. For an extended communication period, time is well spent in
efficiently connecting group members. This type of multicast is more complex but more
efficient than channel multicast. The network level must build and maintain a tree, but
a full channel list need not be maintained on all group hosts. Only local forwarding
information is needed. Tree multicast is also more efficient because only a minimal
number of packet copies are sent for each multicast. Since the tree is spanned over
channels and known to all hosts on these channels, it is failure resilient.



15 25 3S

I~I.
0 0

16 26 36 ILS

- -!. - m - -

17 27 37 0--- E-

k371 
LI

4.L .....--- ---.. 

... 

- -

7r
18 2838 4e

II 
[ !

tInermediate hosi

. 0 5ource/desfIn#natcn socket

FIgure 8. Example of tree mu'tlca$* from hos' 46
°St5 "o group hosts cn channels 4,5 and 7

.%
";..%



31

10. Group Communication within MICROS
An experimental group communication subsystem has been integrated into the

INUCROS operating system ' 7 on the Stony Brook network computer. The underlying
objective of the MICROS project is to explore control and communication techniques for
viable network computers with thousands of hosts. The MICROS research testbed is
mature enough to provide a practical environment for studying distributed algorithms,
languages, and applications.

10.1. Communication Subsystem

The communication subsystem consists of 10 modules that provide packet cast ser-
vices and support Xerox-like packet transport protocols. Another 5 modules for DoD
TCP, IP, and related auxiliary protocols have also been added for compatibility with
Berkeley Unix 4.2+ communications. The ports module uses queues to support either
first-in, first-out or priority ports for sending and receiving local messages. It controls
port access rights, message forwarding, and conditional passing of messages. The sock-
ets module provides location-independent message transfer services either locally within
the same host computer or remotely between processes on different hosts.

To provide type uniformity for messages, ports and sockets directly manage car-
riers, which are standard headers for messages. Information in each carrier includes
source and destination addresses, a unique message identifier, the message type, and a
pointer to the message itself, if it exists. The messages module provides packaging facili-
ties for marshalling and unmarshalling data into and from packets.

For network communication, the network types module declares common addresses
and services. The routes module on each host maintains a cache of local routing infor-

: - mation similar to that of the routing information protocol of the Xerox network sys-
tems. The forks module on each host maintains a cache of forwarding information for
the logical channels recognized by the host on each of its directly connected channels.
The transport module receives all the packets passed by its host or received by its
front-ends. It uses the routes and forks services to do the packet cast appropriate for
the packet destination address.

10.2. Group Subsystem

We assume that a group membership list exists during the group multicast period.
Maintaining membership lists for dynamically changing groups is not an easy task. As

part of the ,MICROS project, research was done on organizing dynamic groups. 5 A
dynamic group is a decentralized group that is coordinated mainly using asynchronous
messages. All members of such a group maintain a dynamically varying list of group
members that can be used to support group multicast and distributed dictionaries of
replicated data. Precise algorithms for maintaining dynamic groups have been
developed, proved effective, and tested3 1.

The group subsystem provides services for organizing dynamic groups of hosts and
multicasting within them. Each group is associated with a logical address to enable
multicast to its members. The communities module provides for the organization of
dynamic groups and supports the three types of group multicast (host, channel, tree) by

NpN

I'.



32

using communication subsystem services. It uses the views module to maintain
membership lists for all groups in which the host is a member. Members exchange views
of the group to bring themselves up-to-date.

An interactive grouper program has been developed to test and demonstrate the
maintenance of dynamic groups on the Stony Brook network computer. It allows the
user to create and terminate groups. It permits queries about the status of groups main-
tained locally. For each group, the user can recruit and dismiss members, send member-
ship list messages to other members, and multicast user messages to group members.
Multicast messages received by the local host can be displayed on a terminal.

10.3. Performance Results

The major design goals for the SAM2S/MICROS kernel and communication subsys-
tems were interface flexibility and ease of experimentation; performance was only
incidental. However, several timing experiments have been done to compare the costs of
the various interfaces. For reference, average process switching time on a MC68000 host
is 2.5 ms.

When single-character serial I/O calls were timed on an LSI-11, the serving of local
1/0 requests through socket interfaces took about two to three times as long as through
queue interfaces. -s a compromise between speed and flexibility, sockets are standardly
used for logical level I/O interfaces and faster queues are used for the physical level
interfaces. A need for remote socket calls to low-level physical I/O drivers has not yet
arisen.

Timing experiments were also done on communication services. Measurements for
each operation were obtained by timing as the operation executed a 1000 times. For
example, using the time of 56.6 seconds for 1000 messages, we can assume that sending

?- a single message of 512 bytes through a socket would take 56.6 ms on average. The
message and its carrier are copied into a packet by the socket manager, the route is

*- determined by the transport manager, and the packet is delivered to the Ethernet
driver. The packet is physically transmitted on the directly connected channel of the
intermediate routing host. A self-addressed packet is sent last and retrieved to deter-

* '. mine when all 1000 duplicated packets have been transmitted.

Unicasting an already prepared. 512-byte message directly through the Ethernet
driver would take about 42.8 ms. The saving of an asynchronous interface to the tran-
sport manager to determine the route and update the carrier accounts for the 13.8 ms
difference in the 56.6 and 42.8 ms times.

Similarly, the observed socket interface time to send a packet of 256 bytes was 42.5
ims; for 128 bytes, 36.0 ms; and for 64 bytes, 31.8 ms. The corresponding times to send
a packet directly to the Ethernet driver were 28.2 ms for 256 bytes, 21.2 ms for 128
bytes, and 17.7 ms for 64 bytes. Calls to both interfaces caused each packet to be

:: copied twice. The observed times to process a packet are about 14 ms each in the
socket interface and in the Ethernet interface. Hence, about 0.028 ms is necessary to

copy each byte of data.

Several experiments centered on the group subsystem and its use of communication
services. Two groups of hosts were used (see Figure 2): 3. 4, 8 and 3, 4, 5, 8. Hosts 3, 4,

A.



33

8 reside on channel 2 and 3, 4, 5, 8 on channels 2 and 3. Creating and sending a 168
byte membership list for the first group from host 8 to host 3 on channel 2 took about
5i ms. Since it takes 38 ms to send a 168-byte unicast packet, we can deduce that
membership message preparation takes about 17 Ms.

Host multicast and channel multicast have also been compared. A host multicast
of two 64-byte packets from host 8 to hosts 3 and 4, all on channel 2, took about 68 ms.
A channel multicast of one packet to both hosts 3 and 4 took only 42 ms. Because the
1000 multicast packets in each burst sometimes come too rapidly for the double buffers
in each 3COM Ethernet interface, only about 65 percent of these burst multicast mes-
sages are actually received.

If host 3 is the multicast source to hosts 4 and 8, the corresponding times are 82 ms
for host multicast and 50 ms for channel multicast. The times for host 3 to multicast to
the group are higher than those for host 8 because host 3 has one more Ethernet inter-
face than host 8. Host 3 multicasting to hosts 4, 5, and 8 in the second group took 115
ms and 85 ms. The times for the larger group are each about 35 ms longer because one
additional packet is needed in each case to reach host 5 on the second channel.

These experiments were run with a small number of hosts and channels. The
disparity between host and channel casting times would be even greater in a system

*with more hosts on each channel.

11. Dynamic Group Algorithms

One of the main uses of multicast communication is to spread important data
among all members of a group of processes or processors that are cooperating on some
common task. The task may be part of a user application part of or a system of related
high-level managers for a distributed operating system. In a large distributed system,
there needs to be some reliable way to organize groups of many processes, where the
membership of the group changes over time. This is a dynamic group.

In work 5' 31 during the last part of this supported effort, we have been able to show
how to organize dynamic groups so that they can agree upon a common membership list
and on replicated user data. Even though each member may independent alter its local
copy of the common list or data, the dynamic group algorithm is provably31 guaranteed
to maintain data consistency among members without synchronization delays and
whether or not member processors fail. The lack of synchronization delays greatly
speeds processing in very large networks.

Ensuring serializability and mutual consistency of replicated data is considerably
more difficult in an asynchronous communication network where all local changes can-
not be broadcast reliably to all members than in systems that take the time to get glo-
bal approval for all pending changes. Distributed dictionaries are a useful database sys-
tem for management of replicated data that need to be only weakly consistent. Weakly
consistent means as consistent as the pattern of messages between distributed members
allows. It means that whenever a message is sent between two members to check con-

JI" sistency, the local data copies held by each will be identical.

Dynamic groups can be organized by replicated dictionaries that are correctly main-
tained even over an unreliable network. The dynamic group algorithm continuously

SA O

, . . .* . . . .. -, * ..-.... ... .. ., .- .. . ... . , . ... '



34

keeps the group intact and all membership dictionary copies weakly consistent even
though group information and time estimates are discarded soon after members are
deleted from the group. Most dictionary messages can be asynchronous. Reliable
handshakes are needed just for initially inserting a member and for finally discarding its
group information. Dynamic groups can efficiently support the maintenance of repli-
cated dictionaries for distributed user applications.

12. Summary

. Support for this project has enabled the creation and porting of the SAM2S operat-
ing svstei-, for LSI-11s to a mixed network of LSI-11 and M68000 computerm. It has
provided il foundation on which to experiment with communication techniques suitable
for very large networks of computers. Efficient ways to implement multicast communi-
cation and replicated data in large distributed systems have been devised. The next line
of research within the MICROS project will be the exploration of global control tech-
niques for networks of thousands of processors and simulating them by analysis and by
testing them realistically on smaller physical networks. Experiments in distributed task
force scheduling24 , in management hierarchy recovery6 , and searching via distributed
name caches are planned. The results obtained from the MICROS research should be
applicable to many similar distributed environments.

13. Acknowledgements

Special thanks go to the ARO Electronics Division administrators who have
patiently helped further this work: Michael Andrews, Jim Gault, Ron Green, and the

*. ever-present Jimmie Suttle.

This research with MICROS began at SUNY/Buffalo, building on an earlier
-+". hardware and software network computer built there. The dozens of students in Buffalo

who helped include: R. Spanbauer, P. Bechtel, D. Benua, P. Henderson. J. Kolkovich, H.
Stvliades, and S. Wilder, for engineering, and A. van Tilborg, R. Curtis, A. Frank, W.
Holmes, P. Lee, M. Palumbo, K. Tso, K. Wong, T. Bartkowski, A. Chin, G. Davidian, J.
Day, W. Earl, S. Isaac, G. Masterson, D. Reif, P. van Verth, and R. Wahl, for software.

. Five of these people moved to SUNY/Stony Brook in 1082 to continue the work.

Many members of the MICROS research group helped to develop the SAM2S ver-
sion of MICROS at Stony Brook. Especially important contributions have been made
by Ariel Frank, Ron Curtis, Shridhar Acharya, Divyakant Agrawal, Bob Barkan, Benoy
DeSouza, Miguel Garcia, Arun Garg, Stuart Jones, FanYuan Ma, Mike Palumbo, Yanick

bauer, Shidan Tavana, Kok Sun Wong, and WeiMin Zheng.

The PhD and Masters degrees conferred from this work include:

ib P(1) Andre M. van Tilborg - "Network Computer Operating Systems and Task Force
Scheduling", Aug. 1982, PhD.

(2) Ariel Frank - "Distributed Dynamic Groups on Network Computers", Aug. 1985,
PhD.

' (3) Paul Lee, Aug. 1982, "Line and Screen Control for Modula-2 System"

* :::2%



35'"k
(4) Kam-Sing Tso. Sept. 1982, "Memory Management System for Modula-2

MICROS/MICRONET"

(5) William S. Holmes, May 1983, "Version and Source Code Support Environment"

(6) Michael J. Palumbo. May 1983, "Stand Alone Modula-2 System Enhancement"

(7) Kok-Sun Wong, Aug. 1983, "Stand Alone Modula-2 System Relocatable Linker and
( Dynamic Loader*'

(8) Yanick P. Pouffary, Aug. 1083, "The Network Layer Implementation of the
MICROS Communication Subsystem"

(9) Miguel Garcia, Dec. 1983, "A Modula-2 Compiler for 68000 Systems"

(10) Arun Garg, Dec. 1983, "Transport Layer Implementation of the MICROS Com-
munication Subsystem"

(11) Alice Tong, Dec. 1983, "Modula-2 Cross Compiler for the Intel 80x86"

(12) Patrick Lou, May 1984, "Comparison Class Programs in Pascal or Modula-2"

(13) Shraga Schnitzer, Dec. 1985, "The M2Debu Postmortem Symbolic Debugger"

(14) Benoy DeSouza, May 1986, "Implementation of IP on SAM2S for a Network of
68000s"

14. References

1. A. J. Frank, L. D. Wittie and A. J. Bernstein, "Multicast Communication on
Network Computers", IEEE Software, 2, 3 (May 1985), 49-61.

2. A. van Tilborg and L. D. Wittie, "Wave Scheduling - Decentralized Scheduling of
Task Forces in Multicomputers", IEEE Transactions on Computers, C-33, 9
(September 1984), 835-844.

3. L. D. Wittie and A. J. Frank. "A Portable Modula-2 Operating System: SAM2S",
Proceedings AFIPS National Computer Conference, 53, (July 1984), 283-292.

4. R. S. Curtis and L. D. Wittie, "Global Naming in Distributed Systems", IEEE

Software, 1, 3 (1984), 76-80.

5. A. Frank, L. Wittie and A. Bernstein, "Maintaining Weakly-Consistent Replicated
Data on Dynamic Groups of Computers", 1985 Proc. Int. Conf. on Parallel
Processing (ACM), St. Charles, IL, August 1985, 155-162.

6. C. K. Mohan and L. Wittie, "Local Reconfiguration of Management Trees in Large

- Networks", Proc. 5th Int. Conf. Dist. Comp. Sys., Denver, CO, May 1985, 386-
393.

7. A. van Tilborg and L. D. Wittie, "Operating Systems for the Micronet Network

Computer", IEEE Micro, 3, 2 (April 1983), 38-47.

-_ 8. A. J. Frank, L. D. Wittie and A. J. Bernstein, "Group Communication on
Netcomputers", Proceedings 4th Intl. Conference on Distributed Computing
Systems, San Francisco, CA, May 1984, 326-335.

9. L. D. Wittie and A. van Tilborg, "An Introduction to Network Computers",
Proceedings ACM82 Conference, Dallas, Texas, October 1982, 199-206.

aY



38

odula-, Springer-Verlag, New York, NY, 2nd edition 'rox Network System", IEEE
.chnical Report 36, Institut fur Informatik, ETH, Zurich, C. Crane, "Evolution of the

, 15, 8 (August 1982), 10-27.

.*..rt Protocols", XSIS 023112. Xerox System Integration Englewood Cliffs, NJ, 1081.
-' ecember 1981. Engod Unifs, January
'a to be Used in Decomposing Systems into MLI ules", 3tanford University, January

fI, 15, 12 (December 1972), 1053-1058.

->ftware for Ease of Extension and Contraction", IEEE ork Computers, PhD Thesis,
Engineering, SE-5, 2 (March 1079), 128-137. )ok, NY, August 1985.

.ind S. P. Harbison, HYDRA/C.mmp: An Experimental
wHill, New York, 1981.

Sproull, "An Open Operating System for a Single-User
dings 7th Symposium on Operating System Principles,

'-. Tilborg, "MICROS, A Distributed Operating System for
gurable Network Computer", IEEE Transactions on

!2cember 1980), 1133-1144.

Computer Operating Systems and Task Force Scheduling,
of Cor puter Science, SUNY at Buffalo, NT, September

Architecture of Concurrent Programs, Prentice-Hall,
:-77.

K. Dalal, "Techniques for Decentralized Management of
Proceedings IEEE COMPCON Spring 80, February 1080,

.,alized Executive Control of Computers", Proceedings 8rd
,.- tributed Computing Systems, October 1082, 31-35.

i D. Wittie, "High-Level Operating System Formation in
,:. IEF, 1980 Intl. Conference on Parallel Processing, August

D. Wittie, "WV'ave Scheduling: Distributed Allocation of
'.%rk Computers", IEEE Proceedings 2nd Intl. Conference on

'Syst., April 1081, 337-347.

,,L. D. Wittie, "Distributed Task Force Scheduling in
Networks", Proceedings AFIPS Aational Computer

198O1), 283-280.
?. M. Metcalfe, "Reverse Path Forwarding of Broadcast
.itions of the ACM, 21, 12 (December 11978), 1040-1048.

Sisms for Broadcast and Selective Broadcast, PhD Thesis,
'iboratory, Stanford University, June 1080.

P .. .'-,:, ,. , ,. .,, .., . . .



N~ WV 11~ ~ V WV. ~ ,.r .. '~ VJV l~ ~V 1.Tb ~ .~ 2 JV.~ -~ 'X 9I~ ~ N N k~ - ~. -
V.

I

-p
-J

S

4

0

S.

VP

.1

J


